A class of matrix-valued polynomials generalizing Jacobi polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of matrix-valued polynomials generalizing Jacobi polynomials

A hierarchy of matrix-valued polynomials which generalize the Jacobi polynomials is found. Defined by a Rodrigues formula, they are also products of a sequence of differential operators. Each class of polynomials is complete, satisfies a two-step recurrence relation, integral inter-relations, and quasi-orthogonality relations. 1. Motivation The understanding of matrix-valued orthogonal polynomi...

متن کامل

Matrix-valued little q-Jacobi polynomials

Matrix-valued analogues of the little q-Jacobi polynomials are introduced and studied. For the 2 × 2-matrix-valued little q-Jacobi polynomials explicit expressions for the orthogonality relations, Rodrigues formula, three-term recurrence relation and its relation to matrix-valued q-hypergeometric series and the scalar-valued little q-Jacobi polynomials are presented. The study is based on the m...

متن کامل

Multivariable Construction of Extended Jacobi Matrix Polynomials

The main aim of this paper is to construct a multivariable extension with the help of the extended Jacobi matrix polynomials (EJMPs). Generating matrix functions and recurrence relations satisfied by these multivariable matrix polynomials are derived. Furthermore, general families of multilinear and multilateral generating matrix functions are obtained and their applications are presented.

متن کامل

A New Property of a Class of Jacobi Polynomials

Polynomials whose coefficients are successive derivatives of a class of Jacobi polynomials evaluated at x = 1 are stable. This yields a novel and short proof of the known result that the Bessel polynomials are stable polynomials. Stability preserving linear operators are discussed. The paper concludes with three open problems involving the distribution of zeros of polynomials.

متن کامل

Cariñena Orthogonal Polynomials Are Jacobi Polynomials

The relativistic Hermite polynomials (RHP) were introduced in 1991 by Aldaya et al. [3] in a generalization of the theory of the quantum harmonic oscillator to the relativistic context. These polynomials were later related to the more classical Gegenbauer (or more generally Jacobi) polynomials in a study by Nagel [4]. For this reason, they do not deserve any special study since their properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2009

ISSN: 0021-9045

DOI: 10.1016/j.jat.2009.01.005